New treatment horizons for immunomodulation

Despina Eleftheriou Professor of paediatric rheumatology UCL GOS Institute of Child Health • Disclosures: I am a paediatric rheumatologist!

I love working with neurologists (I always learn a lot!)

Overview

- Cyclophosphamide/corticosteroids
- Developments in field of novel therapeutics for autoimmunity

• Rheum/general immunomodulation/clinical trial perspective

Cyclophosphamide

- Concerns about toxicity
- Alternative therapies e.g MMF

CLINICAL SCIENCE

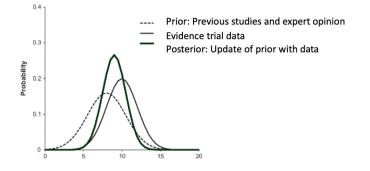
Mycophenolate mofetil versus cyclophosphamide for remission induction in ANCA-associated vasculitis: a randomised, non-inferiority trial

Rachel B Jones,¹ Thomas F Hiemstra,^{2,3} Jose Ballarin,⁴ Daniel Engelbert Blockmans,⁵ Paul Brogan,^{6,7} Annette Bruchfeld,⁸ Maria C Cid,⁹ Karen Dahlsveen,¹ Janak de Zoysa,^{10,11} Georgína Espigol-Frigolé,⁹ Peter Lanyon,¹² Chen Au Peh,¹³ Vladimir Tesar,¹⁴ Augusto Vaglio,^{15,16} Michael Walsh,¹⁷ Dorothy Walsh,¹ Giles Walters,¹⁸ Lorraine Harper,¹⁹ David Jayne,^{1,2} for the European Vasculitis Study Group (EUVAS)

Results:

- 140 patients with AAVnon inferiority
- 8 children
- 67% remission rate in MMF group
- 62% in cyclophosphamide group
- MMF safe well tolerated

Mycophenolate Mofetil (MMF) Versus Cyclophosphamide (CYC) in Childhood Polyarteritis Nodosa: MYPAN trial



Compare the effectiveness of a less toxic treatment (MMF) to standard (more toxic) treatment (cyclophosphamide, CYC)

Rare diseases:

- Sample sizes are often unachievable
- Still need randomised data
- Bayesian randomised controlled trial

Mycophenolate Mofetil Versus Cyclophosphamide for Remission Induction in Childhood Polyarteritis Nodosa: An Open-Label, Randomized, Bayesian Noninferiority Trial

Paul A. Brogan,¹ Barbara Arch,² Helen Hickey,² Jordi Anton,³ Este Iglesias,³ Eileen Baildam,⁴ Kamran Mahmood,⁴ Gavin Cleary,⁴ Elena Moraitis,⁵ Charalampia Papadopoulou,⁵ Michael W. Beresford,² Phil Riley,⁶ Selcan Demir,⁷ Seza Ozen,⁷ Gio Giovanna Culeddu,⁸ Dyfrig A. Hughes,⁸ Pavla Dolezalova,⁹ Lisa V. Hampson,¹⁰ John Whitehead,¹⁰ David Jayne,¹¹ Nicola Ruperto,¹² Catrin Tudur-Smith,² and Despina Eleftheriou¹ Results: Combining the prior expert opinion with results posterior estimates of remission:

- 71% for MMF (90% credibility interval [90% CrI]
 51, 83)
- 75% for CYC (90% Crl 57, 86).

Corticosteroids-assessing toxicity

Seminars in Arthritis and Rheumatism 56 (2022) 152068

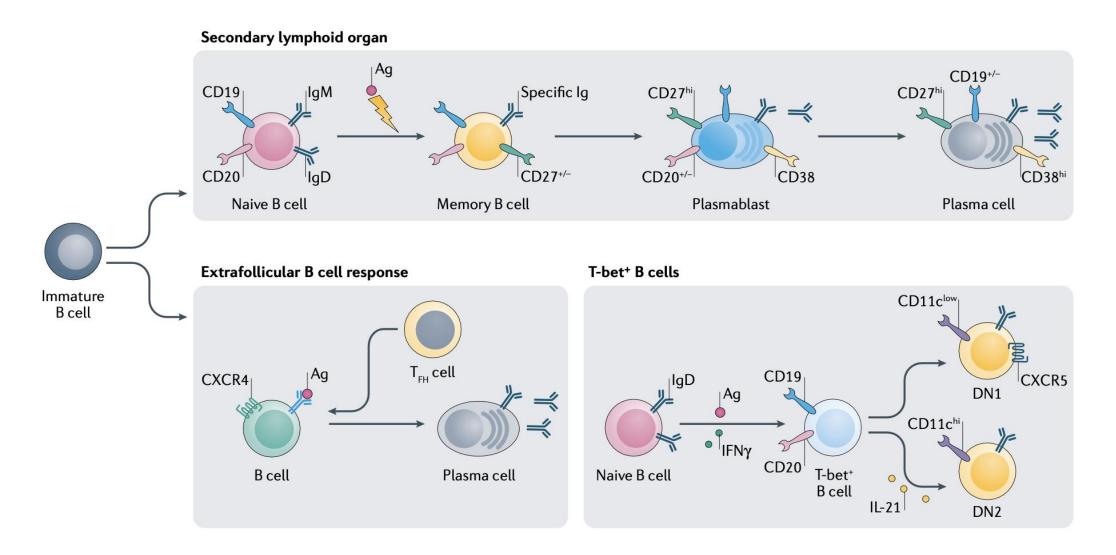
The pediatric glucocorticoid toxicity index

Paul Brogan^a, Ray Naden^b, Stacy P. Ardoin^c, Jennifer C. Cooper^d, Fabrizio De Benedetti^e, Jean-Francois Dicaire^f, Despina Eleftheriou^a, Brian Feldman^g, Jon Goldin^a, Seth E. Karol^h, Fiona Price-Kuehneⁱ, David Skuse^a, Constantine A. Stratakis^j, Nicholas Webb^{k,1}, John H. Stone^{a,*}

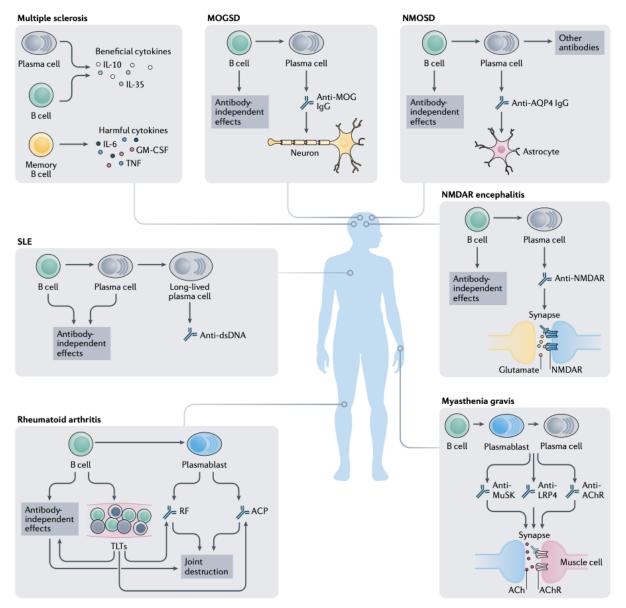
Kawasaki Disease Coronary Artery Aneurysm Prevention trial

http://kdcaap.mrcctu.ucl.ac.uk

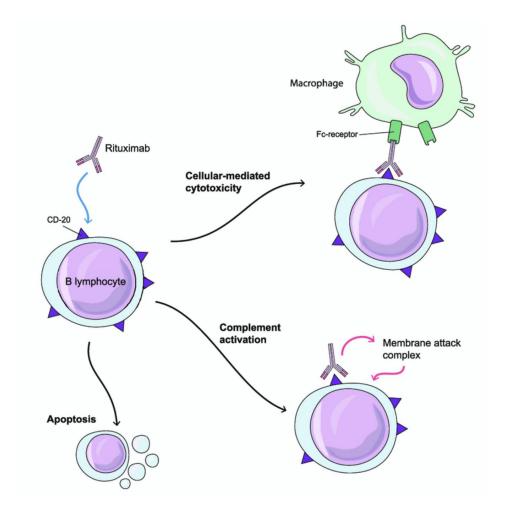
- Body mass index
- Growth velocity


0

- Glucose metabolism
- Blood pressure
- Hyperlipidemia
- Bone mineral density
- Steroid myopathy
- Skin glucocorticoid toxicity
- Neuropsychiatric toxicity
- Infections


B cell depleting agents

B cell biology


Lee at al, Nature Reviews 2020

Roles of B cell lineage cells in autoimmune disorders

Lee at al, Nature Reviews 2020

mAbs targeting CD19 or CD20

Not only antibody mediated Multiple other pathways targeted

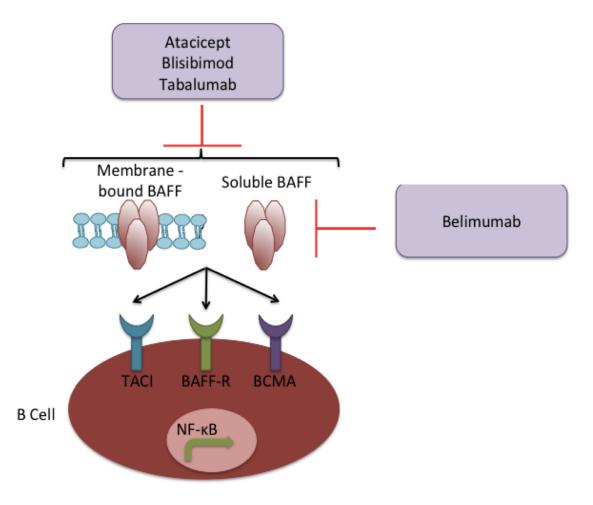
mAbs targeting CD19 or CD20

Drug name	Target based technology	Therapeutic indication	
mAbs targeting CD19 or CD20			
Rituximab	Chimeric anti-CD20 mAb	Relapsing multiple sclerosis	
		NMDAR encephalitis	
		Systemic lupus erythematosus	
		Juvenile dermatomyositis	
		ANCA associated vasculitis	
		Rheumatoid arthritis	
Ocrelizumab	Humanized anti-CD20 mAb	Relapsing and progressive multiple sclerosis	
		Systemic lupus erythematosus	
Ofatumumab	Fully humanized anti-CD20 mAb	Relapsing multiple sclerosis	
		Pemphigus vulgaris	
		Rheumatoid arthritis	

Drug name	Target based technology	Therapeutic indication		
Ublituximab	Next-generation fully humanized anti-CD20 mAb	Relapsing multiple sclerosis		
Obinutuzumab	Fully humanized anti- CD20 mAb	Systemic lupus erythematosus		
		NMOSD		
Inebilizumab (MEDI-551)	Humanized anti-CD19 mAb	NMDAR encephalitis		
		Relapsing multiple sclerosis		
Obexelimab (XMAB5871)	Fully humanized anti- CD19 antibody	Systemic lupus erythematosus		
		Systemic lupus erythematosus		
Belimumab and rituximab combination therapy	Chimeric anti-CD20 and fully humanized anti-BAFF mAbs	Lupus nephritis		
		Idiopathic thrombocytopenic purpura		

Rituximab in SLE

•Merrill *et al*.(EXPLORER)Phase II/III RCT


- •Moderate-to-severe
- Primary endpoints:
- a) Major
- b) partial clinical response at 52 weeks

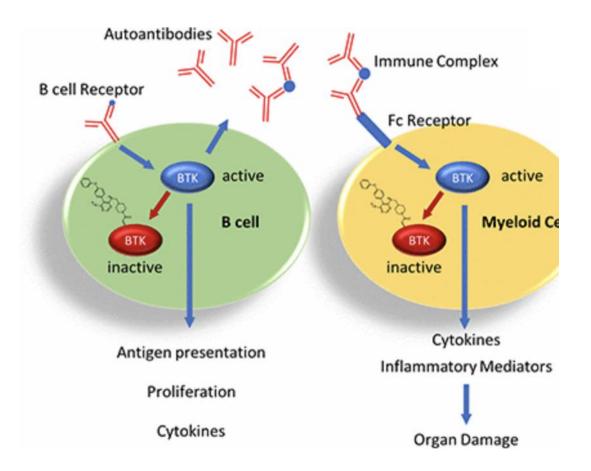
•Primary endpoints not met

•Pre-specified subgroup analysis found better response in blacks and Hispanic group treated with rituximab vs placebo •Strict definitions for major and partial clinical response •Amount of background

- therapy mitigated differences between
- treatment arms

B-cell-activating factor of the TNF family (BAFF)

Belimumab in SLE



- Randomised 1:1:1 ratio to belimumab 1 mg/kg or 10 mg/kg, or placebo
- 867 patients
- Significantly higher response rates with belimumab 1 mg/kg(p=0.0129) and 10 mg/kg (p=0.0006) than with placebo
- No safety concerns

B-cell-activating factor of the TNF family (BAFF) inhibitors

Drug name	Target based technology	Therapeutic indication	
Belimumab	Anti-BAFF mAb	Systemic lupus erythematosus Vasculitis	
		Sjögren syndrome	
lanalumab		Systemic lupus erythematosus	
	Anti-BAFF mAb	Sjögren syndrome	
		Rheumatoid arthritis	
		NMOSD	
Telitacicept (RC18)	TACI–Ig fusion protein	Rheumatoid arthritis	
		Myasthenia gravis	
		Multiple sclerosis	
AMG 570 Bispecific anti-BAFF peptibody, anti-ICOSL mAb	Systemic lupus erythematosus		
	peptibody, anti-iCOSL mAb	Rheumatoid arthritis	
Tabalumab	Fully humanized monoclonal antibody against soluble and membrane-bound BAFF	Systemic Lupus Erythematosus	
Atacicept	Blocks both Blys and APRIL	Systemic lupus erythematosus	
Blisibimod	Selective BAFF inhibitor	Systemic lupus erythematosus	

Bruton's tyrosine kinase (BTK) as a target for autoimmune diseases

Haselmayer et al, J Immunology 2019

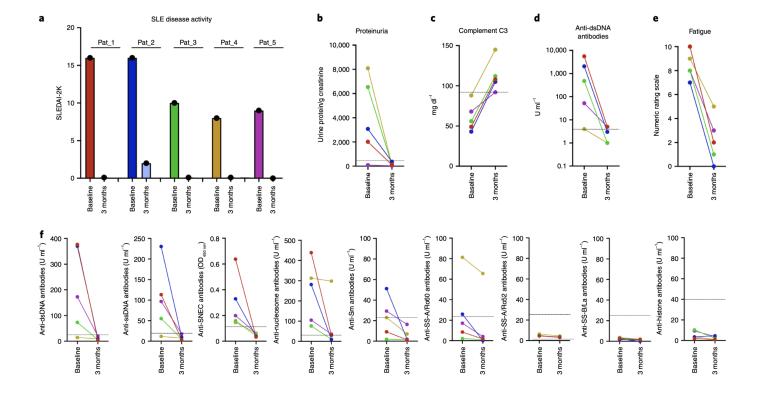
Bruton's tyrosine kinase (BTK) inhibitors

Drug name	Target based technology	Therapeutic indication		
		Rheumatoid Arthritis		
Tolebrutinib (SAR442168)	Small molecule	Systemic lupus erythematosus		
		Relapsing multiple sclerosis		
		Secondary progressive multiple sclerosis		
		Primary progressive multiple sclerosis		
		Systemic lupus erythematosus		
Evobrutinib	Small molecule	Relapsing multiple sclerosis		

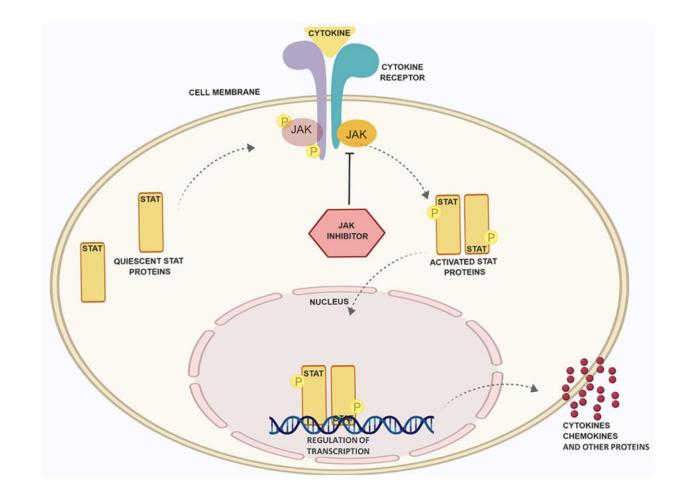
Other therapies targeting B cells?

Anti CD19 CAR cell therapies for systemic lupus erythematosus

- In SLE still several refractory cases
- Deep depletion of CD19+ B cells and plasmablasts in tissues =immune reset
- T cells activated to kill B cells by expressing vector construct encoding CAR for specific antigen on target cells
- Highly effective and robust depletion of target cells in cancer therapy (chronic lymphocytic leukemia, acute lymphoblastic leukemia and B cell non-Hodgkin lymphoma)
- Two preclinical studies in lupus-prone mice supported efficacy of CD19 CAR T cells.
- Tolerability and efficacy of CD19 CAR T cells in a small series of seriously ill and treatment-resistant patients with SLE


Anti CD19 CAR cell therapies for systemic lupus erythematosus

ARTICLES https://doi.org/10.1038/s41591-022-02017-5

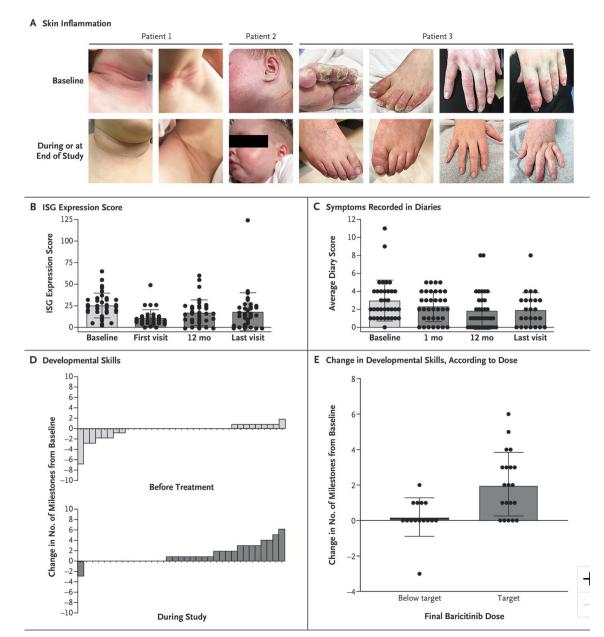

Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus

Andreas Mackensen^{1,2,8}, Fabian Müller^{1,2,8}, Dimitrios Mougiakakos^{1,2,3,8}, Sebastian Böltz^{2,4}, Artur Wilhelm^{2,4}, Michael Aigner^{1,2}, Simon Völkl^{1,2}, David Simon^{2,4}, Arnd Kleyer^{2,4}, Luis Munoz^{2,4}, Sascha Kretschmann^{1,2}, Soraya Kharboutli^{1,2}, Regina Gary^{1,2}, Hannah Reimann^{1,2}, Wolf Rösler^{1,2}, Stefan Uderhardt^{2,4}, Holger Bang⁵, Martin Herrmann^{2,4}, Arif Bülent Ekici^{6,6}, Christian Buettner⁶, Katharina Maria Habenicht⁷, Thomas H. Winkler^{6,7}, Gerhard Krönke^{2,4,8} and Georg Schett^{2,4,8}

IFN blockade

Janus kinase inhibitors: mechanism of action

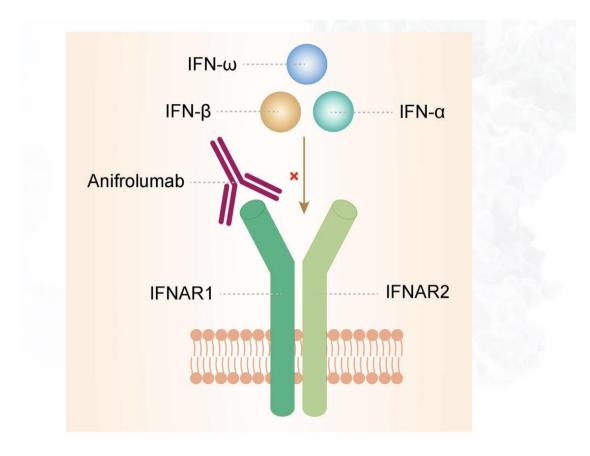
Janus kinase inhibitors


	IL19						
	IL20 IL10 IL22	1123 12 12	ILA IL2	1.6	EPO		1FN-α [*]
	JAK1 JAK2 TYK2	TYK2 JAK2	JAK1 JAK3	JAK1 JAK2	JAK2 JAK2	JAK2	JAK1
	IL-10 family receptor	Cytokine sharing the IL -12Rβ1	Cytokine receptor sharing the y-chain	Cytokine receptor sharing the gp130	Homodimeric cytokine receptor	IFN-¥ receptor	IFN-α receptor
PAN-JAK INHIBITORS delgocitinib peficitinib	+	+	+	+	+	+	+
JAK1 JAK3 INHIBITORS tofacitinib ATI-501 ATI-502	+	-	+	+		+	+
JAK1 JAK2 INHIBITORS baricitinib CTP-543 upadacitinib ruxolitinib	+	+	+	+	+	+	+
JAK1 TYK2 INHIBITORS	+	+	+	+	-	+	+
JAK1 INHIBITORS itacitinib PF-04965842 solcitinib INCB054707 filgotinib	+	-	+	+	-	+	+
JAK2 INHIBITORS pecritinib GSK2586184	+	+	-	+	+	+	-
JAK3 INHIBITORS	-	-	+	-	-	-	-
TYK2 INHIBITORS PF-06835375 BMS986165 PF-06826647	+	+		+	-	-	+

JAK inhibition in systemic lupus erythematosus

- 314 patients randomized to: placebo, baricitinib 4 mg, baricitinib 2mg
- 67% on bari 4mg achieved remission at week 24 (OR 1.8 96% Cl 1-33) for comparison with placebo

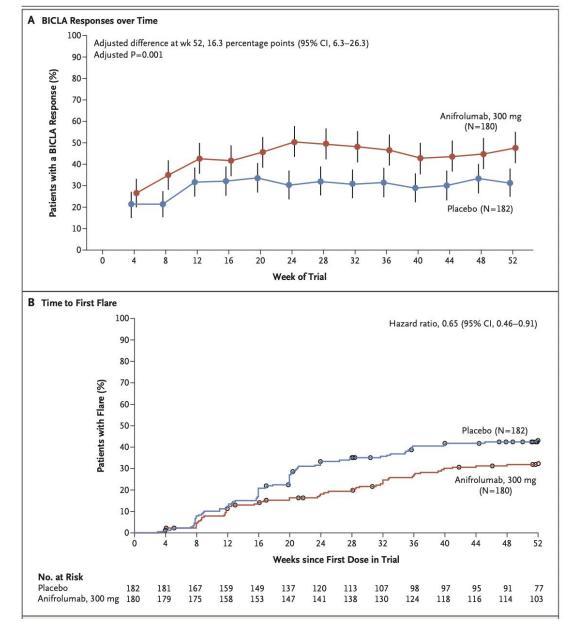
Janus Kinase Inhibition in the Aicardi–Goutières Syndrome

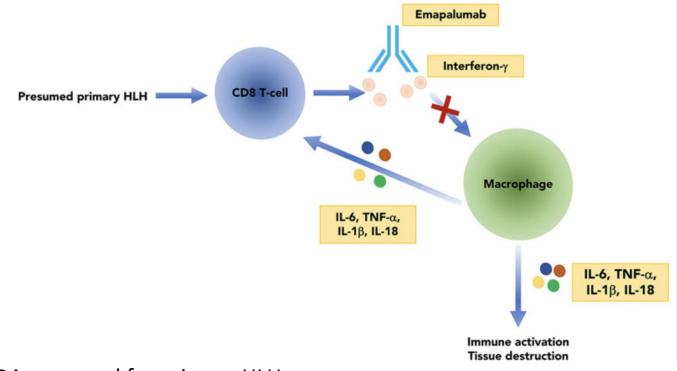


NHS England policy: therapeutic access for monogenic interferonopathies

https://www.england.nhs.uk/public ation/baricitinib-for-use-inmonogenic-interferonopathiesadults-and-children-2-years-andover/

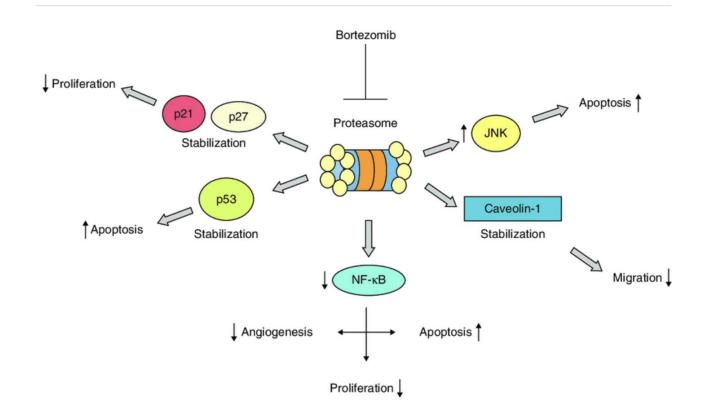
Vanderver et al, NEJM 2020


Anifrolumab



Trial of Anifrolumab in Active Systemic Lupus Erythematosus

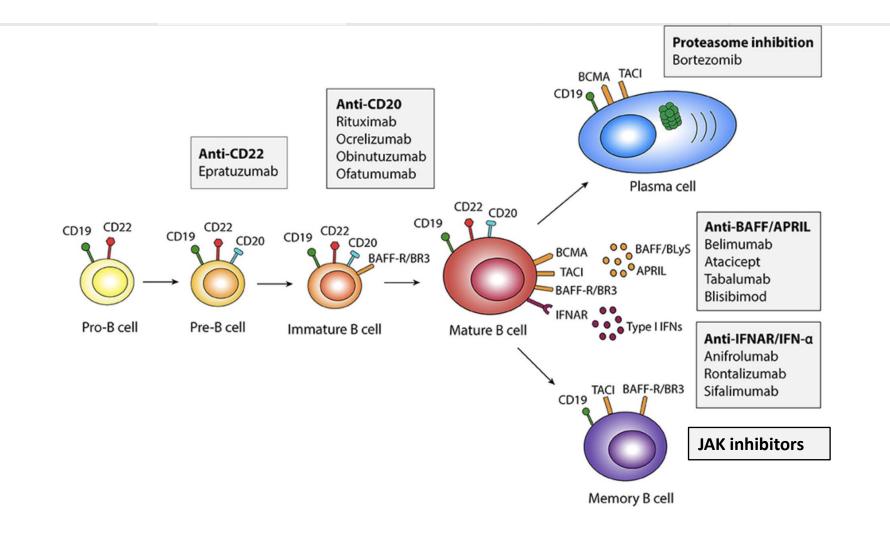
E.F. Morand, R. Furie, Y. Tanaka, I.N. Bruce, A.D. Askanase, C. Richez, S.-C. Bae, P.Z. Brohawn, L. Pineda, A. Berglind, and R. Tummala, for the TULIP-2 Trial Investigators*



FDA approved for primary HLH Ongoing trial for secondary HLH

Vallurupalli et al, Blood 2019 Locatelli et al, NEJM 2020

Proteasome inhibitors



Clinical Experience of Proteasome Inhibitor Bortezomib Regarding Efficacy and Safety in Severe Systemic Lupus Erythematosus: A Nationwide Study

Tomas Walhelm¹, Iva Gunnarsson², Rebecca Heijke³, Dag Leonard⁴, Estelle Trysberg⁵, Per Eriksson^{1,3} and Christopher Sjöwall^{1*}

Russo et al, Adv Therapy 2017

Summary of pharmaceuticals targets for lupus

Parodis et al, Frontiers Immunology 2020

Summary

- Several emerging novel therapies
- General thinking paradigm for improving therapies (rheum experience):
 - Reduce toxicity
 - Understand pathomechanisms
 - Targeted therapies
 - Common mechanisms
 - Robust outcome measures
 - Clinical tools
 - Biomarkers
- Other cytokine/chemokine targeted therapies
- Treat to target

Ongoing challenges

- Therapies for rare diseases
 - Small sample size
 - Robust outcome measures
 - Novel trial design
- Several novel targeted therapies for autoimmune diseases
 - Establish efficacy and safety for specific indications
 - Long term efficacy data
 - Unexpected toxicity
- Access in routine clinical care
 - Costs
 - Age restrictions
- Collaboration (team work!)